
Page 1 of 7

C++ INTERFACE CLASSES

AN INTRODUCTION

Class hierarchies that have run-time polymorphism as one of their prominent characteristics
are a common design feature in C++ programs, and with good design, it should not be
necessary for users of a class to be concerned with its implementation details. One of the
mechanisms for achieving this objective is the separation of a class interface from its
implementation. Some programming languages, e.g. Java, have a mechanism available in the
language for doing this. In Java, an interface can contain only method signatures. In C++
however, there is no such first class language feature, and the mechanisms already in the
language must be used to emulate interfaces as best as can be achieved. To this end, an
interface class is a class used to hoist the polymorphic interface i.e. pure virtual function
declarations into a base class. The programmer using a class hierarchy can then do so via a
base class that communicates only the interface of classes in the hierarchy.

Example Hierarchy
The much used shape hierarchy example serves well here. Let s assume for the sake of
illustration, that we have two kinds of shape: arc and line. The hierarchy therefore,
contains three abstractions: the arc and line concrete classes, and the generalisation
shape. From now on, I ll talk mainly about shape and line only the latter serving as an
illustration of an implementation. These two classes, in fragment form, look like this:

class shape
{
public:
 virtual ~shape();

 virtual void move_x(distance x) = 0;
 virtual void move_y(distance y) = 0;
 virtual void rotate(angle rotation) = 0;

//...
};

class line : public shape
{
public:
 virtual ~line();

 virtual void move_x(distance x);
 virtual void move_y(distance y);
 virtual void rotate(angle rotation);
private:
 point end_point_1, end_point_2;
//...
};

The shape abstraction is expressed here as an interface class it contains nothing but pure
virtual function declarations. This is as close as we can get in C++ to expressing an interface.
Adding to the terminology, classes such as line (and arc) are known as implementation
classes.

Now let s assume this hierarchy is to be used in a two dimensional drawing package. It seems
reasonable to suggest that in this package, drawing may be another useful abstraction.
drawing could be expressed as an interface class, like in this fragment:

Page 2 of 7

class drawing
{
public:
 virtual ~drawing();

 virtual void add(shape* additional_shape) = 0;

//...
};

Besides the virtual destructor, only one member function of drawing the add() virtual
function is shown. Note that drawing does not collaborate with any implementation of
shape, but only with the interface class shape. This is sometimes known as abstract
coupling

drawing can talk to any class that supports the shape interface.

Benefits
Having explained the technique of hoisting a class interface, I need to explain why
developers should be interested in doing this. There are three points:

Hoisting the (common) interface of classes in a run-time polymorphic hierarchy affords
a clear separation of interface from implementation. Further, doing so helps to underpin
the use of abstraction, because the interface class expresses only the capabilities of the
abstracted entity.

It follows on from the above, that new implementations can be added without changing
existing code. For example, it is most likely that drawing will initially have only one
implementation class, but because other code is dependent only on its interface class,
new implementations can easily be added in the future.

Consider the physical structure of C++ code with regard to the interface class, its
implementation classes, and classes (such as drawing) that use it. Assuming common
C++ practice is followed, the definition of shape will have a header file

let s assume
it s called shape.hpp

all to itself, as will drawing (i.e. drawing.hpp, using the
same convention). Now, owing to the physical structure of C++ (that is, the structure it
inherited from C), if anything in the shape.hpp header file is changed, anything that
depends on it such as drawing.hpp must recompile. In large systems where build
times are measured in hours (or even days), this can be a significant overhead.
However, because shape is an interface class, drawing (for example) has no
physical dependency on any of the implementation detail, and it is in the
implementation detail that change is likely to occur (assuming some thought has been
put into the design of shape s interface).

Strengthening the Separation
Returning to the first point above for a moment, there is a way by which we can strengthen
the logical separation further: we can make shape s implementation classes into
implementation only classes. This means that in the implementation classes, all the virtual
member functions are made private, leaving only their constructors publicly accessible. The
line class then looks like this:

Page 3 of 7

class line : public shape
{
public:
 line(point end_point_1, point end_point_2);
//...
private:
 virtual ~line();
 virtual void move_x(distance x);
 virtual void move_y(distance y);
 virtual void rotate(angle rotation);

//...
};

Now, the only thing users can do with line is create instances of it. All usage must be via its
interface i.e. shape, thus enforcing a stronger interface/implementation separation. Before
leaving this topic, it is important to get something straight: the point of enforcing the
interface/implementation separation is not to tell users what to do. Rather, the objective is to
underpin the logical separation the code now explains that the key abstraction is shape,
and that line serves to provide an implementation of shape.

Mixin Interfaces
As a general design principle, all classes should have responsibilities that represent a primary
design role played by the class. However, sometimes a class must also express functionality
representing responsibilities that fall outside its primary design role. In such cases, the need
for partitioning of this functionality is pressing, and interface classes have a part to play.

A class that expresses this kind of extra functionality is called a mixin. For example, it is easy
to imagine there might be a requirement to store and retrieve the state of shape objects.
However, storage and retrieval functionality is not a responsibility of shape in the
application domain model. Therefore, a feasible design is as follows:

class serialisable
{
public:
 virtual void load(istream& in) = 0;
 virtual void save(ostream& out) = 0;
protected:
 ~serialisable();
};

class shape : public serialisable
{
public:
 virtual ~shape();

 virtual void move_x(distance x) = 0;
 virtual void move_y(distance y) = 0;
 virtual void rotate(angle rotation) = 0;

// No declarations of load() or save() in this class
...
};

Page 4 of 7

class line : public shape
{
public:
 line(point end_point_1, point end_point_2);
//...
private:
 virtual ~line();
 virtual void move_x(distance x);
 virtual void move_y(distance y);
 virtual void rotate(angle rotation);

 virtual void load(istream& in);
 virtual void save(ostream& out);

//...
};

This approach is intrusive to a degree because serialisable s virtual member functions
must be declared in line s interface. However, at least there is a separation in that
serialisable is kept separate from the crucial shape abstraction.

Note that serialisable does not have a public virtual destructor its destructor is
protected and non-virtual. serialisable is not intended that pointers to serialisable
are held and passed around in a program i.e. it is not a usage type, that s the role of the
shape class. Making the destructor non-virtual and not publicly accessible allows the code to
state this explicitly, without recourse to any further documentation.

Often mixin functionality is added to a class using multiple inheritance. Here there is an
analogy with Java, in which there is direct language support for interfaces. In Java, a class
can inherit from one other class, but can implement as many interfaces as desired. The same
thing can be emulated in C++ using interface classes, but in C++ there is an added twist

C++ has private inheritance to offer. This approach comes in handy particularly when the
usage type is outside the control of the programmer for example, because it is part of a third
party API. For example, consider a small framework where notifications are sent out by
objects of type notifier, and received by classes supporting an interface defined by
notifiable. The two interface classes (or fragment of, in the case of notifier) are
defined as follows:

class notifiable
{
public:
 virtual void update() = 0;
protected:
 ~ notifiable();
};

class notifier
{
public:
 virtual void register_client(notifiable* o)=0;
 ...
};

Now consider using a GUI toolkit that provides a base class called window, from which all
window classes are to be derived. The programmer wishes to write a class called
my_window that receives notifications from objects of type notifier such a class could
look like this:

class my_window : public window, private notifiable
{
public:
 void register_for_notifications(notifier& n)
 { n.register_client(this); }
 ...
};

Page 5 of 7

Using private inheritance has rendered the notifiable interface inaccessible to clients, but
allows my_window use of it, because like anything else that s private to my_window, its
private base classes are accessible in its member functions. This approach helps to strengthen
the separation of concerns which the use of mixin functionality seeks to promote.

Interface Class Emulation Issues
The fact that we have to consider emulation issues at all is owing to the fact that interfaces are
being emulated rather than being a first class language feature all part of the fun of using
C++! I think there are issues in two areas, i.e. those concerned with:

An interface class

interface

Deriving from an interface class

An interface class interface
Consider the interface class shape:

class shape
{
public:
 virtual ~shape();

 virtual void move_x(distance x) = 0;
 virtual void move_y(distance y) = 0;
 virtual void rotate(angle rotation) = 0;
 // other virtual function declarations...
};

If we write only the above, the compiler will step in and provide: a copy assignment operator,
a default constructor, and a copy constructor. I think we can safely say that, an interface class
run time polymorphic behaviour points to assignment semantics being inappropriate and
irrelevant. Therefore, the assignment operator should be private and not implemented:

class shape
{
public:
 ...
private:
 shape& operator=(const shape&);

};

Interface classes are stateless by their nature, so allowing assignment is harmless, but
prohibiting it is a simple contribution to avoiding errors.

What about the default constructor and a copy constructor? Here we should just thank the
compiler and take what is on offer, as this is the easiest way to avoid any complications. Note
that declaration of constructors by the programmer has potential pitfalls. For example, if a
copy constructor only is declared, then the compiler will not generate a default constructor.

Deriving from an interface class
Consider the following fragment that shows line being derived from shape (as one would
expect):

class line : public shape
{
public:
 line(int in_x1, int in_y1, int in_x2, int in_y2)
 : x1(in_x1), y1(in_y1), x2(in_x2), y2(in_y2)
 {}
 ...
 private:
 int x1, y1, x2, y2;
};

The programmer has declared a constructor that initialises line s state, but not specified
which of shape s constructors is to be called. As a result the compiler generates a call to

Page 6 of 7

shape s default constructor. So far this is fine. Because shape is stateless it doesn t matter
how it gets initialised.

However, that s not the end of the story

It is a common design re-factoring in C++ (and several other languages), to hoist common
state out of concrete classes, and place it in a base class. So if common implementation is
found between shape s derived classes line and arc, rather than have a two tier
hierarchy, it is reasonable to have a three tier hierarchy. For the sake of an example, let s
assume that it is necessary for all shapes to maintain a proximity rectangle i.e. if a point
falls within the rectangle, the point is considered to be in close proximity to the shape. This
functionality can then, for example, be used to determine if a shape object should be
selected when the user click s the mouse near by.

I m going to assume a suitable rectangle class is in scope, and introduce shape_impl
to contain the common implementation.

class shape_impl : public shape
{
private:
 virtual ~shape_impl() = 0;

 virtual void move_x(distance x);
 virtual void move_y(distance y);
 virtual void rotate(angle rotation);
 //...
protected:
 shape_impl();
 shape_impl(const rectangle& initial_proximity);
 //...
private:
 rectangle proximity;
 // ...
};

The implementation class shape_impl is abstract, as shown by the pure virtual destructor.
As a brief digression, it is also an implementation only class its implementation of shape s
interface has been declared as private so clients can create instances, but can t call any of the
member functions.

Now look what happens if line s base class is changed, but changing the constructor used to
initialise the base class gets forgotten about.

class line : public shape_impl
{
public:
 line(int in_x1, int in_y1, int in_x2, int in_y2)
 : x1(in_x1), y1(in_y1), x2(in_x2), y2(in_y2)
 {}
 ...
 private:
 int x1, y1, x2, y2;
};

This will compile, and fail at run time. However, if in the first place the programmer had
written:

class line : public shape
{
public:
 line(int in_x1, int in_y1, int in_x2, int in_y2)
 : shape(), x1(in_x1), y1(in_y1), x2(in_x2), y2(in_y2)
 {}
 ...
};

In the latter case, changing the base class to shape_impl would cause a compile error,
because shape is no longer the immediate base class. This leads me to make the following
recommendation: always call an interface class constructor explicitly.

Page 7 of 7

Finally
Interface classes are fundamental to programming with run time polymorphism in C++.
Despite this, I m all too frequently surprised by how little they are known about by the C++
programmers out there.

This article doesn t cover everything: for example, the use of virtual inheritance when
deriving from mixins is something I hope to get around to covering in a future article.
However, I hope this article serves as a reasonable introduction.

Acknowledgements
Many thanks to Phil Bass, Thaddaeus Frogley and Alan Griffiths for their feedback.

