
1

twoNinetwoNine
Computer Services LtdComputer Services Ltd

mark.radford@twonine.co.ukmark.radford@twonine.co.uk
www.twonine.co.ukwww.twonine.co.uk

© © Mark RadfordMark Radford, April 2006, April 2006

http://www.twonine.co.uk
http://www.twonine.co.uk

2

This talk:This talk:
Is Is a prescriptive treatise on class/function a prescriptive treatise on class/function
interface designinterface design

Aims to be an (interesting) discussion of the factors Aims to be an (interesting) discussion of the factors
that influence interface design in modern C++that influence interface design in modern C++

IntroductionIntroduction

3

TopicsTopics

Design by contractDesign by contract

Exception safetyException safety

Value based programmingValue based programming

TemplatesTemplates

Interface classesInterface classes

4

Design by ContractDesign by Contract

ContentsContents
Contract anatomyContract anatomy

Pre and Post conditionsPre and Post conditions

Contract Specification in C++Contract Specification in C++

IdiomsIdioms

ConstConst

5

Contract AnatomyContract Anatomy

Elements of contracts can be broken down as Elements of contracts can be broken down as
follows:follows:

Static Static -- applicable at compile timeapplicable at compile time

Dynamic Dynamic -- applicable at run timeapplicable at run time

The C++ standard library contains examples of The C++ standard library contains examples of
contractual requirements with both static and contractual requirements with both static and
dynamic aspectsdynamic aspects

6

template <typename type> class array
{
public:

size_type size() const;
type const& at(size_type index) const;

type const& front() const
{ return at(0); }

void pop_front();

...
};

template <typename type> class array
{
public:

size_type size() const;
type const& at(size_type index) const;

type const& front() const
{ return at(0); }

void pop_front();

...
};

Pre and Post ConditionsPre and Post Conditions

Pre:
size() > 0;
size_prior = size()

Post:
size() == (size_prior 1)

Pre:
size() > 0;
size_prior = size()

Post:
size() == (size_prior 1)

The state in which a The state in which a
function call expects to find function call expects to find
the programthe program

The state the call promises The state the call promises
to leave the program in to leave the program in
following its returnfollowing its return

Pre: size() > 0Pre: size() > 0

7

Contract Specification in C++Contract Specification in C++

Complete contracts can rarely be expressed Complete contracts can rarely be expressed
using only C++ language featuresusing only C++ language features

Therefore, other means of expression must be Therefore, other means of expression must be
relied uponrelied upon

External documentationExternal documentation

IdiomsIdioms

8

An Example Idiom An Example Idiom ---- Whole ValueWhole Value

enum tag_type { hour_tag, minute_tag, second_tag };

template <
typename numeric_type, numeric_type first, numeric_type last, tag_type tag>

class numeric_range
{
public:

explicit numeric_range(numeric_type n);
// ...

};

typedef numeric_range<unsigned int, 0, 23, hour_tag> hour;
typedef numeric_range<unsigned int, 0, 59, minute_tag> minute;
typedef numeric_range<unsigned int, 0, 59, second_tag> second;

class time_of_day
{
public:

time_of_day(hour in_hour, minute in_minute, second in_second);
// ...
};

void f()
{

time_of_day now(hour(14), minute(12), second(45));
//...
}

enum tag_type { hour_tag, minute_tag, second_tag };

template <
typename numeric_type, numeric_type first, numeric_type last, tag_type tag>

class numeric_range
{
public:

explicit numeric_range(numeric_type n);
// ...

};

typedef numeric_range<unsigned int, 0, 23, hour_tag> hour;
typedef numeric_range<unsigned int, 0, 59, minute_tag> minute;
typedef numeric_range<unsigned int, 0, 59, second_tag> second;

class time_of_day
{
public:

time_of_day(hour in_hour, minute in_minute, second in_second);
// ...
};

void f()
{

time_of_day now(hour(14), minute(12), second(45));
//...
}

Compiler checks correct type use

9

ConstConst

ConstConst--qualified reference/pointer parameters qualified reference/pointer parameters
promise that arguments state will not changepromise that arguments state will not change

To an extent, the compiler can see that promises are To an extent, the compiler can see that promises are
keptkept
But the possibility of casting away But the possibility of casting away constconst implies implies
the need for trustthe need for trust

Clients can only use Clients can only use constconst effectively with the effectively with the
support of the interfaces they make calls tosupport of the interfaces they make calls to

10

void time_now(time& r);

void f()
{
time t;
time_now(t);

...
}

void time_now(time& r);

void f()
{
time t;
time_now(t);

...
}

constconst & API Design& API Design

time time_now();

void f()
{
const time t = time_now();

...
}

time time_now();

void f()
{
const time t = time_now();

...
}

struct time { hour h; minute m; second s; };struct time { hour h; minute m; second s; };

denied by a function that denied by a function that
passes it back via a passes it back via a
reference argumentreference argument

afforded by a function that afforded by a function that
passes it back as a return passes it back as a return
valuevalue

The opportunity for client code to store the result as a const oThe opportunity for client code to store the result as a const object isbject is

11

class data_structure
{
public:

typedef size_t size_type;

size_type size() const
{

if (!size_valid)
{

its_size = calculate_size();
size_valid = true;

}

return its_size;
}

...
private:

mutable size_type its_size;
mutable bool size_valid;

size_type calculate_size() const;
...
};

class data_structure
{
public:

typedef size_t size_type;

size_type size() const
{

if (!size_valid)
{

its_size = calculate_size();
size_valid = true;

}

return its_size;
}

...
private:

mutable size_type its_size;
mutable bool size_valid;

size_type calculate_size() const;
...
};

Logical vs. Physical Logical vs. Physical constconst

The size() member function
may be viewed as logically
as opposed to physically
const qualified.

The size() member function
may be viewed as logically
as opposed to physically
const qualified.

const qualified member
functions offer the promise
that following a call to them,
the user will perceive no
change in the state of the
objects.

Attribute values visible to the
client remain constant, but
their representation values
may change.

const qualified member
functions offer the promise
that following a call to them,
the user will perceive no
change in the state of the
objects.

Attribute values visible to the
client remain constant, but
their representation values
may change.

12

Exception SafetyException Safety

ContentsContents
ExceptionsExceptions

A sample problem and solutionA sample problem and solution

Adapting to concurrencyAdapting to concurrency

Exception safety guaranteesException safety guarantees

The role of the The role of the nothrownothrow guaranteeguarantee

13

ExceptionsExceptions

Exceptions are woven into the infrastructure of Exceptions are woven into the infrastructure of
C++C++

E.g. the new operator can t allocate memory it E.g. the new operator can t allocate memory it
throws throws std::bad_allocstd::bad_alloc

Compare with other modern C++ features such Compare with other modern C++ features such
as templatesas templates

Which can be used or just left in the toolboxWhich can be used or just left in the toolbox

14

A Sample Problem and SolutionA Sample Problem and Solution

template <typename T> class stack
{
public:

T pop();

//...
};

template <typename T> class stack
{
public:

T pop();

//...
};

void f(stack<my_type>& s)
{

my_type mt;
// ...
mt = s.pop();

}

void f(stack<my_type>& s)
{

my_type mt;
// ...
mt = s.pop();

}

template <typename T> class stack
{
public:
const T& top() const;
void pop();

//...
};

template <typename T> class stack
{
public:
const T& top() const;
void pop();

//...
};

void f(
stack<my_type>& s)

{
my_type mt;

// ...

mt = s.top();
s.pop();

}

void f(
stack<my_type>& s)

{
my_type mt;

// ...

mt = s.top();
s.pop();

}

A solution is to
ensure that if an
exception is thrown,
the pop() function is
never called...

Therefore, separate
the query and pop
operations.

A solution is to
ensure that if an
exception is thrown,
the pop() function is
never called...

Therefore, separate
the query and pop
operations.

This interface design
leaves the programmer with
a problem and no
solution...

If an exception is thrown
during the assignment, the
element on the top of the
stack will be lost forever!

This interface design
leaves the programmer with
a problem and no
solution...

If an exception is thrown
during the assignment, the
element on the top of the
stack will be lost forever!

15

Note that the result
can not be returned
by value

Note that the result
can not be returned
by value

Adapting to MultiAdapting to Multi--ThreadingThreading

template <
typename type,
typename locker
>

class thread_safe_stack
{
public:
pop(type& value)
{

locker lock;
value = st.top();
st.pop();

}
...
private:
std::stack<type> st;

};

template <
typename type,
typename locker
>

class thread_safe_stack
{
public:
pop(type& value)
{

locker lock;
value = st.top();
st.pop();

}
...
private:
std::stack<type> st;

};

Returning the value and
popping it from the top of
the stack must be done
while other threads are
locked out...

This requires both
operations to be combined
into one single function

Returning the value and
popping it from the top of
the stack must be done
while other threads are
locked out...

This requires both
operations to be combined
into one single function

16

Exception Safety GuaranteesException Safety Guarantees

The The guaranteeguarantee
If an operation throws an exception, no resources If an operation throws an exception, no resources
will leak as a resultwill leak as a result

The The guaranteeguarantee
Additionally, the program s state remains unchangedAdditionally, the program s state remains unchanged

The The guaranteeguarantee
An operation guarantees never to propagate an An operation guarantees never to propagate an
exception under any circumstancesexception under any circumstances

17

The Role of the The Role of the NothrowNothrow GuaranteeGuarantee

template <typename type> void f_unsafe(std::vector<type>& v)
{

// ...
v.insert(v.end(), first, last);

// ...
}

template <typename type> void f_unsafe(std::vector<type>& v)
{

// ...
v.insert(v.end(), first, last);

// ...
}

template <typename type> void f_safe(std::vector<type>& v)
{

std::vector<type> v_temp(v);
v_temp.insert(v.end(), first, last);

v.swap(v_temp);

// ...
}

template <typename type> void f_safe(std::vector<type>& v)
{

std::vector<type> v_temp(v);
v_temp.insert(v.end(), first, last);

v.swap(v_temp);

// ...
}

vector s swap() member is carries
a nothrow guarantee therefore,
having constructed the new state, it
can be safely swapped into the
original.

vector s swap() member is carries
a nothrow guarantee therefore,
having constructed the new state, it
can be safely swapped into the
original.

If an exception is thrown
during insert(), v is
left in an indeterminate
state.

If an exception is thrown
during insert(), v is
left in an indeterminate
state.

18

TemplatesTemplates

ContentsContents
Generic programmingGeneric programming

A simple string class templateA simple string class template

TraitsTraits

19

Generic ProgrammingGeneric Programming

A highly flexible mechanism for expressing the A highly flexible mechanism for expressing the
compilecompile--time commonality and variability needed time commonality and variability needed
for Generic Programmingfor Generic Programming

Well illustrated by the STL, where types, data Well illustrated by the STL, where types, data
structures, operations and control flow are structures, operations and control flow are
independently interchangeableindependently interchangeable

20

template<typename charT>
class rudimentary_string
{
public:

typedef charT char_type;
typedef size_t size_type;

size_type size() const;

void copy(
rudimentary_string<char_type> const& s)

{
// resize buffer to fit, then...
std::copy(

s.buffer, s.buffer+size(), buffer);
}

...
private:

char_type *buffer;
...
};

template<typename charT>
class rudimentary_string
{
public:

typedef charT char_type;
typedef size_t size_type;

size_type size() const;

void copy(
rudimentary_string<char_type> const& s)

{
// resize buffer to fit, then...
std::copy(

s.buffer, s.buffer+size(), buffer);
}

...
private:

char_type *buffer;
...
};

The character type
charT can be any type -
subject to the provision
of certain operations.
For example, it may need
to be copyable.

The character type
charT can be any type -
subject to the provision
of certain operations.
For example, it may need
to be copyable.

A Simple String ClassA Simple String Class

Using std::copy() is
convenient but leaves
problems to be solved -
for example, if a
particular platforms
provides a high
performance byte
copying function, how
are we to use it? ...

Using std::copy() is
convenient but leaves
problems to be solved -
for example, if a
particular platforms
provides a high
performance byte
copying function, how
are we to use it? ...

21

TraitsTraits

Delegating the copy Delegating the copy
operation to a operation to a
separate class separate class
template makes it template makes it
possible to provide possible to provide
an explicit an explicit
specialisation for specialisation for
charchar. .

template <typename charT> struct char_traits
{

typedef charT char_type;
typedef size_t size_type;

static char_type* copy(char_type* destination,
char_type const* source, size_type n_to_copy)

{
char_type const* begin = source;
char_type const* end = source + n_to_copy;

return std::copy(begin, end, destination);
}

};

template <typename charT> struct char_traits
{

typedef charT char_type;
typedef size_t size_type;

static char_type* copy(char_type* destination,
char_type const* source, size_type n_to_copy)

{
char_type const* begin = source;
char_type const* end = source + n_to_copy;

return std::copy(begin, end, destination);
}

};

template <> struct char_traits<char>
{ ...

static char_type* copy(
char_type *dest, char_type const *source, size_type n_to_copy)

{
void* result = std::memmove(dest, source, n_to_copy);

return static_cast<char_type*>(result);
}

};

template <> struct char_traits<char>
{ ...

static char_type* copy(
char_type *dest, char_type const *source, size_type n_to_copy)

{
void* result = std::memmove(dest, source, n_to_copy);

return static_cast<char_type*>(result);
}

};

22

template<typename charT,
typename traitsT=char_traits<charT> >
class rudimentary_string
{
public:

typedef traitsT traits;

size_type size() const;

void copy(
const rudimentary_string<char_type>& s)

{
// resize buffer to fit, then...
traits::copy(buffer, s.buffer, s.size());

}
...
private:
...
};

template<typename charT,
typename traitsT=char_traits<charT> >
class rudimentary_string
{
public:

typedef traitsT traits;

size_type size() const;

void copy(
const rudimentary_string<char_type>& s)

{
// resize buffer to fit, then...
traits::copy(buffer, s.buffer, s.size());

}
...
private:
...
};

Users can select the
desired traits, while
the use of default
template arguments
means they don t
have to

Users can select the
desired traits, while
the use of default
template arguments
means they don t
have to

The copy() member
functions now
delegates to the
traits copy()
function this is
transparent to the
user

Traits At WorkTraits At Work

23

Value Based ProgrammingValue Based Programming

ContentsContents
Value based typesValue based types

C++ value type interfacesC++ value type interfaces

Swap semanticsSwap semantics

Whole valuesWhole values

QuantitiesQuantities

24

Value Based TypesValue Based Types

Characterised by ...Characterised by ...
Dominant informational content (state) and Dominant informational content (state) and
transparent identitytransparent identity

Take the form of concrete classes in C++, Take the form of concrete classes in C++,
thereforetherefore

They do not inherit publicly from other typesThey do not inherit publicly from other types

Direct copy semantics make senseDirect copy semantics make sense

25

C++ Value Type InterfacesC++ Value Type Interfaces

General characteristics related (dominant state General characteristics related (dominant state
and transparent identity)and transparent identity)

AccessorsAccessors, , mutatorsmutators and Constructors (for and Constructors (for
conversion, and for initialising state)conversion, and for initialising state)

C++ language representation relatedC++ language representation related
Copy constructor, Copy assignmentCopy constructor, Copy assignment

26

SwapSwap SemanticsSemantics

Necessary to support common idioms which Necessary to support common idioms which
support the strong exception safety guaranteesupport the strong exception safety guarantee

Therefore, the swap function must carry a Therefore, the swap function must carry a
guaranteeguarantee

May be provided either ...May be provided either ...
As a member functionAs a member function

As a freestanding functionAs a freestanding function

By relying on By relying on std::swap()std::swap()

27

Whole ValuesWhole Values

class minutes
{
public:

explicit minutes(int initial);
...

};

class transaction
{
public:

void timeout(const minutes& duration);
...

};

In C++ classes should In C++ classes should
be used to implement be used to implement
first class data first class data
abstractionsabstractions

The compiler is The compiler is
empowered to do empowered to do
stronger type stronger type
checkingchecking

The code The code
communicates communicates
application application
domain domain
vocabularyvocabularyvoid f(transaction* current)

{
current->timeout(minutes(10));
...

}

28

QuantitiesQuantities

E.g. minutes, voltages, kilogramsE.g. minutes, voltages, kilograms
Quantities account for much/most of the values in Quantities account for much/most of the values in
programmesprogrammes

They have their own additional specific They have their own additional specific
characteristics, e.gcharacteristics, e.g

They have They have

A value of zero/empty makes senseA value of zero/empty makes sense

29

Quantity Abstraction PitfallQuantity Abstraction Pitfall

class time_interval
{
public:
struct from_seconds {};
struct from_minutes {};

time_interval(
int value, const from_sec&);

time_interval(
int value, const from_min&);

...
};

std::ostream& operator<<(
std::ostream& os,
const time_interval& value);

Not only does
initialisation require a
very artificial looking
interface design, but

Not only does
initialisation require a
very artificial looking
interface design, but

The need to please
everyone threatens to
bloat the interface
out of control

The need to please
everyone threatens to
bloat the interface
out of control

And what exactly is
inserted into the
stream!?

And what exactly is
inserted into the
stream!?

30

Abstract Quantities as UnitsAbstract Quantities as Units

class minutes
{
public:
explicit minutes(int initial);
minutes();
...

};

std::ostream& operator<<(
std::ostream& os,
const minutes& value);

Initialisation is now
straightforward
either by default or
from a single value

Initialisation is now
straightforward
either by default or
from a single value

Operator overloads
come naturally, and
their meaning is
automatically clear

Operator overloads
come naturally, and
their meaning is
automatically clear

31

Initialisation & ConversionInitialisation & Conversion

class minutes
{
public:
typedef int value_type;

minutes();

explicit
minutes(value_type initial_value);

value_type value() const;
...

};

Default initialisation value of
zero is a feature of quantity
types

Default initialisation value of
zero is a feature of quantity
types

Conversion must be explicit to
convey meaning
Conversion must be explicit to
convey meaning

Conversion back to
underlying type must
possible and must be invoked
deliberately

Conversion back to
underlying type must
possible and must be invoked
deliberately

Note: the provision of value() is necessary for the range of supported operations
to be extensible e.g. for the provision of conversion functions

32

Interface ClassesInterface Classes

ContentsContents
Interface classInterface class

Implementation only classImplementation only class

MixinsMixins

33

Interface ClassInterface Class
class shape
{
public:
virtual ~shape();

virtual void move_x(xinterval x) = 0;
virtual void move_y(yinterval y) = 0;
virtual void rotate(radians r) = 0;

//...
private:
shape& operator=(const shape&);

};

class shape
{
public:
virtual ~shape();

virtual void move_x(xinterval x) = 0;
virtual void move_y(yinterval y) = 0;
virtual void rotate(radians r) = 0;

//...
private:
shape& operator=(const shape&);

};

The The interface classinterface class defines a protocol for usage defines a protocol for usage all all
functions are pure virtual and not implemented (except functions are pure virtual and not implemented (except
for the destructor which will have an empty for the destructor which will have an empty
implementation).implementation).

34

Null ObjectNull Object
class group
{
public:

virtual unsigned int num_in_group() const = 0;
...
};

class group
{
public:

virtual unsigned int num_in_group() const = 0;
...
};

class drawing
{
public:

drawing() : selected(zero_selected),
...
unsigned int num_selected() const
{
return selected->num_in_group();

}
private:

group* selected;
static null_group* zero_selected;

};

class drawing
{
public:

drawing() : selected(zero_selected),
...
unsigned int num_selected() const
{
return selected->num_in_group();

}
private:

group* selected;
static null_group* zero_selected;

};

class null_group : public group
{
public:

virtual unsigned int num_in_group() const
{ return 0; }

...
};

class null_group : public group
{
public:

virtual unsigned int num_in_group() const
{ return 0; }

...
};

The Null Object
provides an
implementation
that behaves as if
the object is absent

The Null Object
provides an
implementation
that behaves as if
the object is absent

Client code no longer
needs to be concerned
with checking for
nullness calls to the
null object do the right
thing

Client code no longer
needs to be concerned
with checking for
nullness calls to the
null object do the right
thing

35

Mock ObjectMock Object

class repository
{
public:

virtual void save(const shape* s) = 0;
...
};

class repository
{
public:

virtual void save(const shape* s) = 0;
...
};

class counting_repository :
public repository

{
public:

counting_repository() : count(0) {}
virtual void save(const shape* s)
{ ++count; }
unsigned int num_saved() const
{ return count; }

...
private:

unsigned int count;
};

class counting_repository :
public repository

{
public:

counting_repository() : count(0) {}
virtual void save(const shape* s)
{ ++count; }
unsigned int num_saved() const
{ return count; }

...
private:

unsigned int count;
};

class drawing
{
public:

void save(repository& r) const;
...
};

class drawing
{
public:

void save(repository& r) const;
...
};

void unit_test(const drawing& d)
{

counting_repository counter;
d.save(counter);

assert(counter.num_saved()
== 5);

}

void unit_test(const drawing& d)
{

counting_repository counter;
d.save(counter);

assert(counter.num_saved()
== 5);

}

counting_repository is a simple
example of a mock object

In this simple illustration, a
mock implementation of
repository is used to test
that the correct number of
shapes are saved

Assume a drawing object has been created and loaded with five shapes

36

Implementation Only ClassImplementation Only Class

class line : public shape
{
public:

line(point end_point_1, point end_point_2);
//...
private:

virtual ~line();
virtual void move_x(distance x);
virtual void move_y(distance y);
virtual void rotate(angle rotation);

//...
};

class line : public shape
{
public:

line(point end_point_1, point end_point_2);
//...
private:

virtual ~line();
virtual void move_x(distance x);
virtual void move_y(distance y);
virtual void rotate(angle rotation);

//...
};

Making the derived class Making the derived class implementation onlyimplementation only allows client code to create allows client code to create
instances, while calls are permitted only through pointer/refereinstances, while calls are permitted only through pointer/reference to the nce to the
interface classinterface class

The separation of The separation of
concerns afforded concerns afforded
by the interface by the interface
class can be class can be
strengthened by strengthened by
making derived making derived
classes classes
implementation implementation
onlyonly constructors constructors
are public, are public,
everything else is everything else is
private.private.

37

MixinsMixins

class storable
{
public:

virtual void load(istream& in) = 0;
virtual void save(ostream& out) = 0;

protected:
~ storable();

private:
storable& operator=(const storable &);

};

class storable
{
public:

virtual void load(istream& in) = 0;
virtual void save(ostream& out) = 0;

protected:
~ storable();

private:
storable& operator=(const storable &);

};
class shape : public storable
{
public:

virtual ~shape();
...
// No declarations of load() or save()
// in this class
};

class shape : public storable
{
public:

virtual ~shape();
...
// No declarations of load() or save()
// in this class
};

Sometimes a class Sometimes a class
must support must support
functionality outside functionality outside
its mainstream design its mainstream design
remitremit

(Note the protected (Note the protected
nonnon--virtual destructor virtual destructor

mixinsmixins are not are not
deletion types)deletion types)

Using a Using a mixinmixin interface interface
class keeps these class keeps these
extra concerns extra concerns
separate and reduces separate and reduces
the level of intrusionthe level of intrusion

38

struct coordinate { unsigned int x,y; };

class coordinated
{public:

virtual coordinate where() const = 0;
...
};

struct coordinate { unsigned int x,y; };

class coordinated
{public:

virtual coordinate where() const = 0;
...
};

class event
{public:

virtual ~event() = 0;
...
};

class event
{public:

virtual ~event() = 0;
...
};

class timer :
public event

{
...

};

class timer :
public event

{
...

};

class mouse_click : public event,
public coordinated

{
...
private:

virtual coordinate where() const
{ return c; }

coordinate c;
};

class mouse_click : public event,
public coordinated

{
...
private:

virtual coordinate where() const
{ return c; }

coordinate c;
};

When
functionality
added by a mixin
is not relevant to
the whole
hierarchy, the
mixin can not be
the base class

In such cases
multiple inheritance
can be used to
include the mixin
interface

In such cases
multiple inheritance
can be used to
include the mixin
interface

MultiplyMultiply--Inherited Inherited MixinMixin

39

class event
{public:

virtual ~event() = 0;
...
};

class event
{public:

virtual ~event() = 0;
...
}; class mouse_click :

public event, public coordinated
{
...
private:

virtual coordinate where() const
{ return c; }
coordinate c;

};

class mouse_click :
public event, public coordinated

{
...
private:

virtual coordinate where() const
{ return c; }
coordinate c;

}; void process(event* e)
{ const coordinated* c =

dynamic_cast<coordinated*>(e);
if (c)
{

const coordinate where = c->where();
//...

}
}

void process(event* e)
{ const coordinated* c =

dynamic_cast<coordinated*>(e);
if (c)
{

const coordinate where = c->where();
//...

}
}

There is an analogy here There is an analogy here
with Smalltalk with Smalltalk in which an in which an
object can be sent a object can be sent a
message, and will either message, and will either
act, or reply saying it does act, or reply saying it does
not understand the not understand the
messagemessage

By using By using dynamic_castdynamic_cast<> to navigate across a <> to navigate across a
hierarchy, it is possible to ask an object if it hierarchy, it is possible to ask an object if it
supports a particular supports a particular mixinmixin interfaceinterface

Do You Support This Interface?Do You Support This Interface?

40

class notification_client
{
public:

virtual void update() = 0;

protected:
~notification_client();

};

class notification_client
{
public:

virtual void update() = 0;

protected:
~notification_client();

};

class my_window : public window, private notification_client
{
public:

void register_for_notifications(notifier& n)
{ n.register_client(this); }
...

};

class my_window : public window, private notification_client
{
public:

void register_for_notifications(notifier& n)
{ n.register_client(this); }
...

};

class notifier
{
public:

virtual void register_client(
notification_client* c)=0;

...
};

class notifier
{
public:

virtual void register_client(
notification_client* c)=0;

...
};

private inheritance
renders this
interface (normally)
inaccessible

private inheritance
renders this
interface (normally)
inaccessible

The notifier only needs
access only to the
behaviour expressed by the
notification_client interface

The notifier only needs
access only to the
behaviour expressed by the
notification_client interface

Within a member function the
conversion is accessible
Within a member function the
conversion is accessible

Private Private MixinMixin

41

template <typename persistent>
class persistent_ptr
{

database_query<persistent> >* query;
persistent* object;

public:
persistent* operator->() const
{ if (!object)

object = query->execute():
return object;

}
...

};

template <typename persistent>
class persistent_ptr
{

database_query<persistent> >* query;
persistent* object;

public:
persistent* operator->() const
{ if (!object)

object = query->execute():
return object;

}
...

}; template <typename persistent>
class database_query
{
friend class persistent_ptr<persistent>;
virtual persistent* execute() const = 0;
...

};

template <typename persistent>
class database_query
{
friend class persistent_ptr<persistent>;
virtual persistent* execute() const = 0;
...

};

Private Operation InterfacePrivate Operation Interface

A degree of
specific
access can be
obtained by
using private
class
members in
conjunction
with friend

A degree of
specific
access can be
obtained by
using private
class
members in
conjunction
with friend

There is no support
provided by C++ for
package level access

42

C++ offers a rich toolset supporting several C++ offers a rich toolset supporting several
approaches to design/programmingapproaches to design/programming

E.g. Value based, object oriented and generic E.g. Value based, object oriented and generic
programming are all supportedprogramming are all supported

With the richness of the toolset comes a wide With the richness of the toolset comes a wide
range of choicesrange of choices

This places responsibility for managing complexity This places responsibility for managing complexity
firmly with the designerfirmly with the designer

SummarySummary

