
11

1

Design Experiences in Design Experiences in
C++C++

twoNinetwoNine
Computer Services LimitedComputer Services Limited

mark.radford@twonine.co.ukmark.radford@twonine.co.uk
www.twonine.co.ukwww.twonine.co.uk

© © Mark RadfordMark Radford, April 2005, April 2005

Mark RadfordMark Radford

Generative Programming Goes Live!Generative Programming Goes Live!

ACCU Spring Conference, April 2005

Mark Radford

twoNine Computer Services Ltd

mark.radford@twonine.co.uk

www.twonine.co.uk

Modification History

8th April 2005 Slides submitted for inclusion in conference CD

12th April 2005 Notes added. Correction to Adding in the Pre-
Processor slide (obj corrected to obj.as_represented()).

3rd May 2005 Notes updated after conference presentation.

http://www.twonine.co.uk
http://www.twonine.co.uk
http://www.twonine.co.uk
Modification

22

2

PrefacePreface

Topics coveredTopics covered
The Generative Programming paradigmThe Generative Programming paradigm

Discussion and examples of its implementation Discussion and examples of its implementation
using C++using C++

Topic specifically Topic specifically coveredcovered
TestingTesting

In this presentation I will include material to do with Generative
Programming, the paradigm and its implementation. Sorry, but I will not be
including material on testing in this context it would take far more time
than is available. I may at some point include such material in a future
presentation.

Having said that, I will offer some brief observations before moving on

Generative Programming involves producing a number of related software
products i.e. a family of them using an automated process. Therefore
the emphasis shifts from testing the software produced, to testing the
process producing it. If the production process is right, the end product will
be right (in the same way as a working compiler produces correct object
code for the source code fed into it).

A possibility that turns out to not quite work is generating test software as
part of the process. This is actually somewhat pointless if the process
can be trusted to produce correct test software, it can be trusted to
produce a correct product in the first place.

33

3

ContentsContents

Introduction to Introduction to

Case study 1Case study 1
Software for a VCR rangeSoftware for a VCR range

Tools and mechanisms for generationTools and mechanisms for generation

Case study 2Case study 2
Value based domain typesValue based domain types

This presentation is about my experiences of trying to understand this
material, and my experiences of it in practice. To this end, the above four
sections fall into two broader ones.

The introduction to Generative Programming and case study 1 form the
first part, while tools and mechanisms for generation and case study 2
form the second. The former two are the learning experiences, while the
latter two are the practical experiences.

44

4

Introduction to Introduction to Generative ProgrammingGenerative Programming

PurposePurpose
Introduce Generative ProgrammingIntroduce Generative Programming

ContentsContents
DefinitionDefinition

Process anatomyProcess anatomy

Requirements, components and configurationRequirements, components and configuration

Examples of software system familiesExamples of software system families

In the C++ community, Generative Programming is not a mainstream
software development paradigm. I can see why it is not mainstream, but
I m rather baffled as to why it seems to be absent from popular literature
altogether. A certain amount of material focusing on the related topic of
C++ template meta-programming has appeared ([Alexandrescu2001] and
[Abrahams2004] for example), but not on Generative Programming itself.

This section aims to introduce Generative Programming, taking a close
look at the seminal definition from [Czarnecki2000].

55

5

DefinitionDefinition

A software development paradigm based on modelling software
system families such that, given a particular requirements
specification, a highly customised and optimised intermediate or
end-product can be automatically manufactured on demand from
elementary, reusable implementation components by means of
configuration knowledge. The generated products may also
contain non-software artefacts, such as test plans, manuals,
tutorials, maintenance and troubleshooting guidelines, and so on.

(My emphasis)

[Krzysztof Czarnecki, Ulrich Eisenecker,
Generative Programming: Methods, Techniques

and Applications , Addison Wesley]

This is the definition given in Czarnecki and Eisenecker s seminal book
[Czarnecki2000] on Generative Programming. I have added my own
emphasis to draw attention to the key participants.

Note that products may be end or intermediate. I have taken intermediate
products to be libraries that will be used as part of an end product
development.

66

6

Requirements, components and configurationRequirements, components and configuration

RequirementsRequirements
Describe the product to be generatedDescribe the product to be generated

ComponentsComponents
Encapsulate functionality from which a product can Encapsulate functionality from which a product can
be assembledbe assembled

ConfigurationConfiguration
Describes how to assemble components such that Describes how to assemble components such that
the resulting product meets the requirementsthe resulting product meets the requirements

Requirements describe the product to be generated.

The product is assembled from components that encapsulate the
functionality form which the product can be assembled. There are two
levels of component: the elementary implementation components, and the
components these are used to generate. The elementary components are
build on to produce more specific components, and so on, until the end
product (rather than a component) of it emerges.

The Generative Programming process can be likened to an assembly line
such as those used for manufacturing cars. Components can be changed,
leading to a different product coming out at the end. Similarly in
Generative Programming, the configuration is a specification of the
knowledge of what components to include, and how to assemble them.
The configuration can be viewed as an implementation of the
requirements, in the context of the Generative Programming process it
determines which product in the family is actually produced.

77

7

Process AnatomyProcess Anatomy

Product
Generator

Requirements

Components

Configuration
The generator contains knowledge of how to
produce the product to meet the
requirements by assembling components
according to the configuration

The slide is a pictorial representation of the Generative Programming
process. The requirements, components and configuration are all inputs to
the generator, while the product is its output i.e. inputs are fed into the
generator, and a product comes out the other side.

Note that here the components are the elementary components that form
the basis for all software to be generated. In this representation, I have
taken product to refer to all output from the generator i.e. product
includes components that have been generated as part of the process.

88

8

Examples of Software System FamiliesExamples of Software System Families

Complete banking systemsComplete banking systems
Customised to for each hardware and operating Customised to for each hardware and operating
system combinationsystem combination

Container librariesContainer libraries
Versions supporting alternative tradeoffs can be Versions supporting alternative tradeoffs can be
generated, e.g.generated, e.g.

­­ One supporting maximum run speedOne supporting maximum run speed

­­ One supporting minimum memory consumptionOne supporting minimum memory consumption

Banking systems are examples of end products.

The slide mentions customisation of hardware and operating system
combinations, but this is only one possible area of customisation. Another
such area of variability the is the repositories in which reports are to be
stored. For example, if reports are to be stored in a database, the system
will need the correct code to interface with database used by the bank.

Container libraries are an example of intermediate products i.e. products
to be used as part of a larger software system.

Note the vagueness in the tradeoff mentioned on the slide i.e. that of run
speed versus memory consumption. The point is that optimising for speed
is itself a whole area of potential customisation! For example, for
sequenced containers, there are indexing schemes that (assuming lookup
starts at the beginning of the container) would improve search lookup
speed for elements further away from the starting point. Other schemes
are possible, e.g. those involving hashes, and these have their own
tradeoffs.

99

9

Case Study 1: Software for a VCR RangeCase Study 1: Software for a VCR Range

PurposePurpose
Illustrate Generative Programming process by Illustrate Generative Programming process by
describing the production of onboard software for a describing the production of onboard software for a
range of Video Cassette Recorder (VCR) machinesrange of Video Cassette Recorder (VCR) machines

ContentsContents
Driving the process using templatesDriving the process using templates

Using the compiler as a generation toolUsing the compiler as a generation tool

This example focuses on using the C++ compiler as a generator, and
using C++ templates to specify the requirements and configuration.

Before going any further, let me make something clear: this is a contrived
example, not one from a real world project. Therefore you may ask, what
is it doing in a design experiences talk? The answer is that it has played a
role in the development of my understanding of this material.

I first read Czarnecki and Eisenecker's seminal book on Generative
Programming [Czarnecki2000] nearly five years ago at the time of writing.
After reading the book, I formulated this example in an attempt to help
myself understand the material. I have periodically revisited it in the
intervening years, and in particular, have made several updates to it while
preparing this presentation.

Note that the example is intended to show only how the software can be
produced using Generative Programming. To this end to keep the
illustrations simple, certain details such as some of the parameters that
would need passing have been ignored.

(The example probably needs updating to use something other than video
recorders, as it seems these are becoming increasingly rare these days).

1010

10

VCR Machine FeaturesVCR Machine Features

Some of the features a VCR machine may Some of the features a VCR machine may
have are:have are:

Record, play, fast forward, rewind etc (basic Record, play, fast forward, rewind etc (basic
features)features)

Extra fast winding (forward and rewind)Extra fast winding (forward and rewind)

Digital stereoDigital stereo

PDC (Programme Delivery Centre) signal handlingPDC (Programme Delivery Centre) signal handling

Automatic channel tuningAutomatic channel tuning

I am assuming that the selection of possible VCR features listed on the
slide will not need any explanation. One would expect any VCR machine,
even the most basic model, to have record, play, rewind and fast forward.
Other features may or may not be present depending on the model.

Different VCR models have different sets of features. Obviously, each
onboard software product will need to contain code to handle the features
of the particular model for which it is intended. For the purposes of this
example, I am assuming that the software should contain only the code to
handle the features of the model for which it is intended.

Therefore, for a range of VCR models, a family of onboard software
products is required.

In these days of cheap memory, the reality is that one software product
would be produced with all features catered for. However, this does not
detract from this case study s illustrative value.

1111

11

VCR Machine RangeVCR Machine Range

Consider three models and their associated Consider three models and their associated
featuresfeatures

all the usual features, such as record, play, all the usual features, such as record, play,
fast forward and rewindfast forward and rewind

in addition, has extrain addition, has extra--fast forward & rewindfast forward & rewind

in addition, has facilities to use the in addition, has facilities to use the
Programme Delivery Centre (PDC) signalProgramme Delivery Centre (PDC) signal

This example continues with a range consisting of three VCR models, as
shown in the slide. Other models may be added, and these will have their
own combinations of features (taken from the list on the previous slide).

For the purpose of this example, the three models listed on the slide are
the three in the range at the time of its launch. The range may have
models added and removed during its commercial lifetime.

1212

12

VCR Onboard SoftwareVCR Onboard Software

For any particular model, the onboard software For any particular model, the onboard software
should contain only the code needed to handle should contain only the code needed to handle
the features the model hasthe features the model has

It must be possible to generate onboard software to It must be possible to generate onboard software to
accommodate new combinations of features when accommodate new combinations of features when
new models are brought outnew models are brought out

It may be necessary to put together the onboard software for a new model
in a very short time (perhaps in order to compete in the market, in
response to a new model being brought out by a rival manufacturer). In
this circumstance, there is an obvious advantage to being able to produce
the software simply by running the build process, having set up the
desired (parameterised) configuration.

In the following slides, I will show the implementation of only PDC signal
and extra fast winding features that s all there is space for on a slide.
However, all features are implemented in a similar way.

1313

13

Features as Policy ClassesFeatures as Policy Classes

enum pdc_states { pdc_on, pdc_off };

template <pdc_states state>
struct pdc_feature;

template <> struct pdc_feature<pdc_on>
{

static void handle_pdc()
{ ... code ... }

};

template <> struct pdc_feature<pdc_off>
{
};

Handler function is
declared and implemented
for pdc_on

Note: the extra-fast winding policy classes are implemented similarly

pdc_on and pdc_off flag
the presence or absence
(respectively) of PDC
signal handling

Handler function is not
needed for pdc_off

Policy classes [Alexandrescu2001] use templates to capture specific
pieces of functionality, and allow one implementation to be exchanged for
another.

The slide shows the implementation of the PDC signal handling feature
using a policy class. The code implementing the feature is encapsulated in
a class (or rather, a struct, to be precise) that contains code only for the
implementation of the PDC feature. The presence or absence of the
feature is flagged by the enums pdc_on and pdc_off, respectively.

There is no implementation of the generalised class template just a
declaration to meet the needs of the compiler. There are two
specialisations: one containing code, and one empty, for when the PDC
feature is present and absent, respectively.

Having an empty struct for the pdc_feature<pdc_off> specialisation
is one approach and perhaps too minimalist. The handle_pdc()
member function could be declared but not implemented. More about this
in a later slide.

1414

14

Configuration TemplatesConfiguration Templates

enum vcr_models { basic, deluxe, super_deluxe };

template <pdc_states pdc_flag,
extra_fast_winding_states extra_fast_winding_flag,
... >

struct vcr_feature_configuration
{ static const pdc_states pdc_state = pdc_flag;

static const extra_fast_winding_states extra_fast_winding_state =
extra_fast_winding_flag;

...
};

template <vcr_models model> struct vcr_model_configuration;

template <> struct vcr_model_configuration<deluxe> :
public vcr_feature_configuration <pdc_off, extra_fast_winding_on, ...>

{};
...

Configuration Templates specify whether a feature is enabled or not for a
particular model

The slide shows how the configuration is implemented as C++ class
templates. The configuration templates are class templates containing the
configuration knowledge enabling the desired product to be generated.

There are two stages of configuration: feature configuration model
configuration. The former is represented as a general class template,
while the latter is represented as an explicit specialisation for the particular
model. When a new model is added to the range, a model configuration
template specialisation must be written for it.

The mechanisms are as follows

First enums are declared to denote the models to be supported (these
must be updated when models are added to or withdrawn from the range).

Next a class template is defined to contain the feature configuration
knowledge. It has a template parameter for each feature, to denote
whether the feature is present or absent. In specialisations of this class, a
member constant is initialised with the value of each template argument
(there is a member constant for each feature, although only one is shown
in the fragment on the slide).

Finally, a class template is declared containing knowledge of the feature
configuration for the model. This is simply an empty definition derived from
a specialisation of the feature configuration class template the latter
being specialised using arguments for the desired set of features.

1515

15

Configuration Templates in ActionConfiguration Templates in Action

template <vcr_models model> struct vcr_onboard_software
{

typedef vcr_model_configuration<model> config;

static void handle_pdc()
{
pdc_feature<config::pdc_state>::handle_pdc();

}

static void handle_extra_fast_rewind()
{

extra_fast_winding_feature<
config::extra_fast_winding_state>::handle_rewind();

}
...

};

Here, configuration templates determine the code selected for
inclusion when the onboard software is generated

typedef vcr_onboard_software<deluxe> sw;

This slide shows the apparatus from which the (onboard software) product
is actually generated the product is implemented as a single class
template containing static member functions for the various features. The
product is generated by explicitly specialising this class template for a
particular VCR model, using the enums denoting the models (see previous
slide and notes).

Note, given that this is the deluxe model, which does not have the PDC
signal handling feature. Therefore, in the handle_pdc() function the
pdc_feature policy class resolves to the empty
pdc_feature<pdc_off> specialisation. Given that the model has no
PDC signal handling, this the onboard software s handle_pdc()
member function is never called, and as the class of which it is a member
is a class template, it is therefore never instantiated. This means that
when the onboard software class template is instantiated, the code
containing the call to pdc_feature::handle_pdc() is not instantiated, so no
error will result assuming all is according to plan, and the possibility this
error could occur (in the event of a configuration error) has diagnostic
benefit.

If it was necessary to explicitly instantiate the class template or the
handle_pdc() member function, then it would be necessary to declare
(but not necessarily implement) all member functions of component policy
classes.

1616

16

Case Study Case Study End NoteEnd Note

Templates arguments were used to specify the Templates arguments were used to specify the
feature set for a particular modelfeature set for a particular model

Software for a model supporting any Software for a model supporting any
combination of features could be generatedcombination of features could be generated

Assuming the availability of suitable components Assuming the availability of suitable components
(policy classes)(policy classes)

The illustrations in the previous few slides have shown how the (onboard
software) product can be generated, but these illustrations have only
shown the implementation of a couple of features. The illustration of the
software product for the deluxe model used the extra fast winding features
and PDC signal handling feature, showing how the former was included,
while the latter was not.

The apparatus and techniques shown could be applied to any combination
of features assuming the availability of policy classes for each feature,
the necessary configuration templates (supporting the desired feature set)
just need to be written.

Therefore, once the necessary configuration templates have been written,
generating the onboard software for a new VCR model is just a matter of
running the build process.

1717

17

Tools and Mechanisms for GenerationTools and Mechanisms for Generation

PurposePurpose
Present an overview of tools and mechanisms for Present an overview of tools and mechanisms for
generating C++ source codegenerating C++ source code

ContentsContents
TemplatesTemplates

The preThe pre--processorprocessor

External programsExternal programs

This series of slides presents a tools and mechanisms overview. On a
pedantic note: the distinction between tools and mechanisms is rather
burred in this context, and I have not paid much attention to making any
distinction.

Generating C++ source code is a natural approach to implementing
Generative Programming in C++. To this end, there is no shortage of
mechanisms two of them (Templates and the pre-processor) provided
by the C++ implementation. Note that regarding templates, the generation
of C++ source code takes a certain perspective, which hopefully will
become clear over the next few slides.

I have used the term external program to refer to programs outside the
translation phases of C++. External programs include utilities such as
Make, as well as custom written generators. Having said that, when using
Make (or similar) a custom program will be needed to do the generation at
some point. The generator can be either one program, or more than one
working together.

1818

18

TemplatesTemplates

The C++ compiler is a C++ code generatorThe C++ compiler is a C++ code generator
Templates are the input languageTemplates are the input language

The C++ generated during instantiation is the The C++ generated during instantiation is the
object codeobject code

Templates are popular mechanism for Templates are popular mechanism for
in C++in C++

MetaMeta--programs manipulate other programs or programs manipulate other programs or
themselvesthemselves

Since the addition of templates to C++, the compiler has itself been a C++
code generator. Note that Czarnecki and Eisenecker (in [Czarnecki2000],
section 10.5) point out that C++ at the static level is Turing complete that
is, it supports conditional and looping constructs (with looping constructs
emulated by recursion).

Templates are an input language, and the object code from the template
instantiation process is C++. Obviously this is not what happens in
practice (the compiler instantiates templates to its own internal format).
However this perspective is valid, because when a template is
instantiated, the programmer effectively has use of a class in the same
way they would if a non-template had been written.

Meta programs are programs that manipulate themselves or other
programs. In C++ Generative Programming, template meta-programming
is a powerful device for driving the configuration of components.

1919

19

Issues with TemplatesIssues with Templates

Experience with templates has shown they can Experience with templates has shown they can
achieve far more than they were designed forachieve far more than they were designed for

A high degree of syntactic complexity is a price that A high degree of syntactic complexity is a price that
must be paid for pushing the boundariesmust be paid for pushing the boundaries

Programmers who are comfortable with advanced Programmers who are comfortable with advanced
template techniques are raretemplate techniques are rare

In practice, error messages are often crypticIn practice, error messages are often cryptic

C++ template programming techniques have become ever more
sophisticated since the ratification of the language standard [ISO1998] in
1998. The examples in [Alexandrescu2001] and [Czarnecki2000]
demonstrate just how powerful and versatile C++ templates really are.

However, sadly the news isn t all good. I would like to consider three
issues with templates

1. Sophisticated use leads to much syntactic complexity, largely as a
consequence of templates being pushed far beyond the limits their
designers envisaged. The result is that typically, template meta-
programming produces C++ code that many consider to be cryptic (but
your experience may be different).

2. Templates are seen as an advanced language feature, and there are
not many programmer around who are comfortable writing them (although
more appear to be happy to use template libraries such as STL).
Programmers who are comfortable with advanced template techniques
are quite rare.

3. Error message resulting from templates (and their use) are often
cryptic. Several years after the ratification of the C++ standard, there are
popular commercial compilers that still have a long way to go in this area.

2020

20

The C++ PreThe C++ Pre--ProcessorProcessor

Compared with templates, the preCompared with templates, the pre--processor processor
has advantageshas advantages

For example, in certain cases where its token For example, in certain cases where its token
pasting capabilities are usefulpasting capabilities are useful

Its output is available for viewing, whereas template Its output is available for viewing, whereas template
instantiations are private to the compilerinstantiations are private to the compiler

However, cryptic error messages are still a However, cryptic error messages are still a
problemproblem

The pre-processor is much maligned in C++. This is largely because of its
traditional use e.g. in C, for defining static constants is error prone,
while C++ supports compile time constants.

In my view the C++ pre-processor is still a perfectly valid tool it just has
a different role to play. The level of indirection it introduces (between the
code that is processed by the pre-processor and the code that is
compiled) opens up possibilities that can be exploited when generating
code.

Compared with templates

The pre-processor has facilities for converting arguments to strings, and
for token pasting. This makes possible, techniques that are either difficult
or impossible to achieve using templates.

The output from templates is private to the compiler. In many (most?)
C++ implementations, a switch is available that causes the pre-processor
output to be written to a file.

Having said that there is a downside. The pre-processor does produce
cryptic error messages, as a result of the compiled code having been
modified by the pre-processor from the original source written by the
programmer. However, while quality of implementation varies, there are
template implementations in current popular compilers that also produce
highly cryptic error messages.

2121

21

External ProgramsExternal Programs

From the configuration point of view, these From the configuration point of view, these
afford the most flexibilityafford the most flexibility

The C++ generated is available for viewingThe C++ generated is available for viewing
Template instantiations are private to the compilerTemplate instantiations are private to the compiler

An extra stage must be managed in the build An extra stage must be managed in the build
processprocess

These can be custom written for the purpose, or can be existing utilities
such as Make. However, utilities such as Make are not useful on their own

they must be used in conjunction with either the template/pre-processor
facilities of the C++ implementation, or in conjunction with a custom
written program. The first two observations on the slide assume a custom
program is involved somewhere in the generation mechanism.

Naturally the involvement of custom written programs affords the most
flexibility not surprising given that they are written for the purpose. Note
that such programs can have the elementary implementation components
hard coded into them leaving less artefacts to be managed.

The code produced by custom generators is available for human viewing
(always useful) compare with template instantiation which are private to
the compiler. Further, note that the code produced will also be correct!
Once the generator has been developed, there are no compilation errors
resulting from the generated C++.

Having said all that, there are disadvantages. There is extra effort involved
in producing a custom generator program, although this effort is a
predictable overhead. Further, there is extra effort in managing the extra
stage in the build process. In many projects, the advantages described
above may not outweigh the disadvantages.

2222

22

Case Study 2: Value Based Domain TypesCase Study 2: Value Based Domain Types

PurposePurpose
Explore Generative Programming approaches to the Explore Generative Programming approaches to the
production of production of families in C++families in C++

ContentsContents
Introduction to the Whole Value idiomIntroduction to the Whole Value idiom

Interface requirementsInterface requirements

Approaches to specification and generationApproaches to specification and generation

Each application domain uses value based information, and each domain
has a family of value based concepts associated with it. In C++ these
value based concepts translate into value based types.

Some types are more general (measurements such as time in seconds,
for example) while others are more specific (for example, a motor
vehicle s vehicle identification number). Whole Value classes are a means
of implementing such domain types in C++.

For small Whole Value libraries, typically template/pre-processor
techniques will be appropriate certainly these are the techniques I have
found myself using most often. However, for larger projects and hence
larger libraries, the case custom written programs as generators becomes
much stronger.

The Whole Value pattern originates in The CHECKS Pattern Language of
Information Integrity by Ward Cunningham (see [Coplien1995]), a pattern
language that drew on its author s experience of implementing financial
systems in Smalltalk. It is so called because it addresses the need to
capture all the facets of a value i.e. the need to retain its type and units,
for example. Whole Value is applicable as an idiom in C++ and other
languages with direct support for user defined value based types.

2323

23

The ProblemThe Problem

In languages without data abstraction support, In languages without data abstraction support,
built in types are used to represent values, but:built in types are used to represent values, but:

CompileCompile--time type checking is weaktime type checking is weak

Communication is weak because the vocabulary of Communication is weak because the vocabulary of
domain types is absent from the codedomain types is absent from the code

Unfortunately, C++ programmers have a Unfortunately, C++ programmers have a
tendency to follow suittendency to follow suit

There is a tendency when developing C++ software, for programmers to
represent value based domain types using only the built in types. This is a
traditional approach, used for many years in languages lacking support for
user defined value based types.

The price that must be paid for the consequent lack of strong type
checking, is the expenditure of resource in dealing with bugs that result.
From a project management perspective, the issue here, is that the
amount of work involved is highly unpredictable.

2424

24

The The Whole ValueWhole Value Idiom Idiom ---- A C++ SolutionA C++ Solution

Representing domain value types as classesRepresenting domain value types as classes
Empowers the compiler to detect type mismatch Empowers the compiler to detect type mismatch
errorserrors

Raises the code s level of selfRaises the code s level of self--documentationdocumentation

void f()
{

time_of_day now(
hours(14),
minutes(12),
seconds(45));

...
}

The compiler checks for correct
type matching

The code speaks clearly in the
vocabulary of the domain

Comments are not needed

In C++, creating classes to represent domain types (e.g. GP Pounds,
metres per second) offers a better set of tradeoffs. The most obvious
advantage is the type checking the compiler can do. Another compelling
advantage is strengthened communication, because much of domain
vocabulary is visible in the code itself, without recourse to separate
documentation.

Naturally as always, the advantages must be traded against the costs.
The most obvious are the cost of producing, and the cost of managing the
proliferation of, small classes. However my experience has been that any
disadvantages fade into insignificance compared to just the benefits of
strengthened compile time type checking. From the project management
perspective, the extra work involved is predictable.

Note that conversion constructors should be explicit. The integer value
12 is not the same piece of information as 12 minutes. The code must
represent all the facets of the value.

2525

25

Automation for Cost MitigationAutomation for Cost Mitigation

Implementing the Implementing the idiom requires idiom requires
the production of many small and similar the production of many small and similar
classesclasses

The effort required to produce and manage these The effort required to produce and manage these
adds cost to the projectadds cost to the project

Automation helps to mitigate the project riskAutomation helps to mitigate the project risk
It reduces variability in the cost of producing the It reduces variability in the cost of producing the
classesclasses

Whole Value classes normally don t have very much individual
functionality. From a certain perspective, they are largely the same class
repeated many times with a different name. Their generation using
automated techniques must therefore be on the agenda.

Even if the benefit outweighs the cost, the production of Whole Value
classes especially large quantities of them adds cost that must be
included in the project management. Automation helps mitigate that cost.
Again predictability is the project management watchword. If the
production can be successfully automated, then the cost is the same
regardless of whether ten or a thousand such classes are to be produced.
Note that this assertion assumes the cost of computational resource is
negligible compared to the cost of programmer resource.

2626

26

OperationsOperations

There is a small minimum set of operations There is a small minimum set of operations
mandatory for objects to be usablemandatory for objects to be usable

These must be implemented as membersThese must be implemented as members

The additional operations needed depends on The additional operations needed depends on
intended useintended use

These can be implemented as freestanding These can be implemented as freestanding
functions/operatorsfunctions/operators

Whole Value classes are very lightweight. Mostly they just have one data
member and underlying type (typically either a fundamental type or
std::string), an instance of which holds the value.

There is a small set of operations that must be supported by each type.
These operations must be implemented as member functions. This is the
minimum set of member functions that allows further operations to be
added as freestanding functions. Note that I m not saying that generation
schemes can not implement all operations as member functions I am
just setting a criteria for the minimum set of member functions.

Many types will need additional operations (what these are depends on
the nature of the type). Therefore, generations schemes need, in their
configuration, some means of specifying additional operations for the
generator to add.

2727

27

Required Member FunctionsRequired Member Functions

Non-throwing swap is needed
to support the strong exception
safety guarantee

Conversion to underlying type
is needed so that operations
can be added as freestanding
functions/operators

class serial_number
{
public:

serial_number();
explicit serial_number(const std::string& initialiser);
serial_number(const serial_number& original);
serial_number& operator=(const serial_number& rhs);

void swap(serial_number& other);
// never throws

std::string as_represented() const;
...

};

The slide shows an example illustrating the set of member functions that I
consider to constitute the minimum set of operations. The presence of
conversion construction, copy construction and copy assignment should
come as no surprise. Therefore I ll just cover the remaining members.

Default constructor

Not all values have natural default values. However, default construction
must be included for the value to function with some parts of the standard
library. For example some std::map operations require a default
constructor.

as_represented()

This returns the value as the underlying representation type. Its presence
means that any additional operation (other than construction or
destruction) can be added as a freestanding function.

swap()

Given the possible need to write code honouring the strong exception
safety guarantee, I regard this as an essential member function. True, it
may be possible to get away without it, using only as_represented().
However, I think there will be situations in which writing generic code,
where a swap operation guaranteed not to throw is required, becomes
very tricky. Being able to fall back on a non-throwing swap() member
function removes any need for client code to distinguish (for example)
between whole values with int and std::string (or a user defined
type, for that matter) as the underlying representation type.

2828

28

Additional OperationsAdditional Operations

Whole Values may require additional operations Whole Values may require additional operations
depending on how the type will be useddepending on how the type will be used

For example:For example:
A (textual) description may need A (textual) description may need operator+operator+ for for
concatenation purposesconcatenation purposes

require arithmetic operationsrequire arithmetic operations

Which additional operations are required depends on how the type will be
used. In some cases the types have characterisations associated with
them that reflect the way in which they will be used, e.g. quantities.

In some cases, it will be necessary to add operations to types on an
individual basis. In others, it will be necessary to add operations based on
the types characterisation. For example, any type characterised as a
quantity will require arithmetic operations [1] : increment, decrement,
addition, subtraction, multiplication and division operations.

It is likely that two (textual) description objects will need concatenating.
Therefore the type will need an operator+ implementing this.

Note that conversions are an example of operations that need adding on
an individual basis. Any attempt to generalise conversions (or implement
them generically) is dangerous unintended conversions may be
implemented accidentally.

[1] Relational operations will also be required, but I ve omitted these to
keep things simple. Arithmetic operations will serve by way of example in
later slides.

2929

29

Type Production Using TemplatesType Production Using Templates

template <
typename type,
typename tag_type
>

class whole_value
{
...
};

struct serial_number_tag {};

typedef whole_value<std::string, serial_number_tag>
serial_number;

Whole Value types can be produced
using a class templates and aliasing
using typedef

Note the tag type used to disambiguate
specialisations using the same
underlying type

This is a technique I have used several times for producing small type
libraries.

A class template is defined that supports the minimum set of member
functions, and takes the underlying type as a template parameter. It also
takes a second template parameter: a tag type to disambiguate
specialisations of the template having the same underlying type. For
example, consider the following two specialisations:

typedef whole_value<unsigned int> minutes;

typedef whole_value<unsigned int> seconds;

The above produced two aliases for the same specialisation.

This generation scheme is very limited in its usefulness because of the
problem of adding operations (see next slide). Its usefulness is limited to
producing classes supporting the only the minimum set of operations i.e.
the class template s member functions.

3030

30

Problem with Adding OperationsProblem with Adding Operations

There is no straightforward way to specify There is no straightforward way to specify
additional operationsadditional operations

Operations must not be declared as nonOperations must not be declared as non--
member function templatesmember function templates

It is too easy for types to acquire operations they It is too easy for types to acquire operations they
are not intended to haveare not intended to have

The only way to specify additional operations in this scheme is to code
them specifically for each type requiring them.

Note that supplying freestanding function templates is not a satisfactory
solution it is recipe for errors. For example, consider the following
template:

template <typename T>
bool operator< (const T& left, const T& right)
{...}

If this function template is in scope, the user can write (in error) a<b for
any type, and if the type does not already have an operator< that is an
exact match, the compiler will produce one in the form of an implicit
specialisation of the template.

Note that this problem is known from experience with the standard
libraries attempt to provide generic relational operations in the
std::rel_ops namespace.

3131

31

Adding in the PreAdding in the Pre--ProcessorProcessor

#define CREATE_TYPE(type_name, underlying_type) \
struct type_name##_tag {}; \
typedef whole_value<underlying_type, type_name##_tag> type_name;

#define ADD_STREAM_INSERTION_OPERATOR(type_name) \
std::ostream& operator<<(std::ostream& os, const type_name& obj) \
{ \

os << obj.as_represented(); \
return os; \

}

CREATE_TYPE(seconds, unsigned int)
ADD_STREAM_INSERTION_OPERATOR(seconds)

seconds sec(7);
std::cout << sec << std::endl;

Operations can now be
added by specifying a
requirement

Here the pre-processor approach adds the facility for the programmer to
choose what operations they want their types to support, and have them
automatically included in the product.

Looking at it from a different angle: the user i.e. the programmer in this
case specifies the features the product is required to have.

Writing ADD_STREAM_INSERTION_OPERATOR(seconds) provides the
configuration information the pre-processor needs in order to generate a
stream insertion operator for seconds.

3232

32

Templates and PreTemplates and Pre--Processor Processor In FavourIn Favour

The techniques use mechanisms provided by The techniques use mechanisms provided by
the C++ implementationthe C++ implementation

Whole Value generation can be packaged (and Whole Value generation can be packaged (and
distributed) as a librarydistributed) as a library

There are no additional artefacts to manageThere are no additional artefacts to manage
­­ Specification and configuration information is combined Specification and configuration information is combined

with the C++ codewith the C++ code

The main advantage of techniques involving templates and the pre-
processor are, in my experience, their ease of availability they are
included as standard in every C++ implementation.

Further, there are no additions to the build process, which there are when
custom generators are used. Managing the extra step custom generators
add is quite easy with Make and similar utilities, but is more of a chore
using some popular IDEs.

3333

33

Templates and PreTemplates and Pre--Processor Processor AgainstAgainst

There is no straightforward way to define groups There is no straightforward way to define groups
of types and add operations to all types in the of types and add operations to all types in the
groupgroup

Specification and configuration information is Specification and configuration information is
combined with the C++ codecombined with the C++ code

The surrounding code is noiseThe surrounding code is noise

It is possible to define groups of types such as quantities, such that all
conforming generated classes have the relevant operations added to
them. However, using the template and pre-processor approaches, there
is no way that I would call straightforward. Quantity is an obvious
characterisation that works well as an example, and could easily be
catered for by the generation scheme. However, including in the
generation mechanism, a mechanism allowing the user to configure the
generation of quantities (or types satisfying other characterisations), is
difficult. There are probably ways involving pulling in sets of operations
(implemented as base class member functions) using inheritance, but
these are not what I class as straightforward.

Combining specification/configuration information with C++ code adds
noise to this information. Using conventional C++ program organisation
(with the type library spread across more than one header file) the
information is not likely to be in one place.

3434

34

External Programs as GeneratorsExternal Programs as Generators

This approach is suited to projects where more This approach is suited to projects where more
control over the generation process is neededcontrol over the generation process is needed

Typically this will be the case for projects where Typically this will be the case for projects where
there are hundreds of domain types (or more)there are hundreds of domain types (or more)

Specification information is not part of the code Specification information is not part of the code
in which the types are deployedin which the types are deployed

Typically it will be in one or more configuration files Typically it will be in one or more configuration files
that drive the generatorthat drive the generator

I am assuming here that a custom written program will be involved at
some point, even if utilities such as Make are included in the generation
process.

A few years ago, I worked on a large scale project [1], developing a
warranty claims system for a leading car manufacturer. There were two
development phases: the first phase required a large domain type library
to be produced (I can t remember how many, over a two hundred
through), and the second required another significant number (a few
dozen) adding. This library also had to support many conversions between
types.

One projects of this scale, the control over the generation process
afforded by custom written programs is valuable.

Typically, specification information unless it is hard coded into the
generator will be in configuration files. There is no surrounding noise
(compare with template and pre-processor techniques where the
specification is integral with the C++ code).

[1] The project involved three companies in two countries. Just afterwords,
I estimated that over a hundred people passed through the project during
its initial three year development.

3535

35

Specification/Configuration MechanismsSpecification/Configuration Mechanisms

Three possible mechanisms are:Three possible mechanisms are:
Using one or more configuration filesUsing one or more configuration files

Using a databaseUsing a database

HardHard--coding the information into the generator coding the information into the generator
programprogram

Only the configuration Only the configuration file(sfile(s) approach will be) approach will be
discussed herediscussed here

I will consider only the configuration file approach because it s the one I
have experience of using see the large project I alluded to on the
previous slide. I ve mentioned using a database and hard coding the
information into the generator, because these are alternative approaches
that occurred to me. I don t think they are of much use however. Using a
database strikes me as overkill, while hard coding the information into the
generator once again surrounds the configuration information with noise.

The approach we adopted in the project I have alluded to was to use a
single configuration file. The generator was not very sophisticated in that,
if the configuration file was modified, all types were regenerated, with the
resulting several hour rebuild overhead. Happily this did not happen too
often.

One option that has occurred to me since, is this

When generating C++ classes/functions, the generator could keep a log of
the specification to which they were generated. On subsequent runs, it
could then compare the current input specification with the log, and
regenerate only if the specification has changed. Note this assumes one
header per class/function otherwise a large rebuild results anyway, and
the mechanism built into the generator looses its value.

3636

36

Example Configuration File FormatExample Configuration File Format

[Type]
Name=file_path
Underlying=string
Classification=none
Operations=operator+

[Type]
Name=seconds
Underlying=uint
Classification=quantity

...

file_path + file_path}

In addition to the set of required
member functions, these types will
have these additional operations:

Increment (++) and decrement (Increment (++) and decrement (----))

Four arithmetic operations:Four arithmetic operations:

seconds + secondsseconds + seconds

seconds seconds secondsseconds

seconds * unsigned seconds * unsigned intint

seconds / unsigned seconds / unsigned intint

On the project I ve been talking about, the operations had to be specified
individually in the configuration. I think, unfortunately, an opportunity was
missed. The fragment on the slide shows how characterisations such as
quantity can be catered for. Note that these characterisations could also
be configured by providing a classification facility in the configuration file.
For example:
[Classification]

Name=quantity

Operations=operator++, operator-- \

operator+, operator-, \

operator*underlying, operator/underlying

Note that the default operands are the Whole Value type, whereas there is
a simple method of specifying the second operand as being of the
underlying type.

Now, any types specified as having the quantity classification will have
these operations generated for them.

3737

37

Case Study Case Study End NoteEnd Note

Whole Values exist in families determined by Whole Values exist in families determined by
the (problem) domain they servethe (problem) domain they serve

Families can be generated using a combination Families can be generated using a combination
of templates and the preof templates and the pre--processorprocessor

It is symptomatic of It is symptomatic of C++ sC++ s richness, that this can be richness, that this can be
achieved entirely within the translation phasesachieved entirely within the translation phases

Each domain has its own family of value based domain types. In the
warranty claims project I have been alluding to, although some of the
types were project specific, many (e.g. vehicle identification number)
came directly from the motor vehicle industry.

Families of types can be generated using a combination of templates and
the pre-processor. That this can be achieved without looking outside the
C++ implementation, is a direct result of the richness of the features
provided by modern C++.

3838

38

Final RemarksFinal Remarks

C++ supports several approaches to C++ supports several approaches to
programming programming is is
among themamong them

The language functions well as bothThe language functions well as both
A means of implementation (templates and the preA means of implementation (templates and the pre--
processor)processor)

A target language (for generation by an external A target language (for generation by an external
program)program)

Generative Programming is applicable to producing products both large
and small in scale. This is in much the same way as Object Oriented
Programming is applicable to projects both large and small.

Unfortunately, unlike Generic Programming and Object Oriented
Programming, Generative Programming has not received the same
amount of coverage in popular literature.

Generative Programming is for the generation of product families from
components and requirements information captured as a configuration.
However, I feel that the inclusion of the lifecycle i.e. requirements
through to product in a single production process, gives this approach
added value.

3939

39

I hope you found this talk I hope you found this talk
interestinginteresting

Thank you for your attention!Thank you for your attention!

I will post this presentation I will post this presentation
(with notes) at:(with notes) at:

EndEnd

www.twonine.co.uk/documents.html

References

[Abrahams2004] David Abrahams and Aleksey Gurtovoy, C++ Template
Metaprogramming: Concepts, Tools, and Techniques from Boost and
Beyond, Addison Wesley, 2004

[Alexandrescu2001] Andrei Alexandrescu, Modern C++ Design: Generic
Programming and Design Patterns Applied, Addison Wesley, 2001
[Coplien1995] Edited by James O Coplien and Douglas C Schmidt,
Pattern Languages of Program Design, Addison-Wesley, 1995.

[Czarnecki2000] Krzysztof Czarnecki and Ulrich Eisenecker, Generative
Programming: Methods, Techniques and Applications, Addison Wesley,
2000

[Gamma1995] Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[ISO1998] International Standard: Programming Language - C++, ISO/IEC
14882:1998(E), 1998.

[Radford2003] Pattern Experiences in C++, available from
www.twonine.co.uk/documents.html

http://www.twonine.co.uk/documents.html
[Abrahams2004]
http://www.twonine.co.uk/documents.html

