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In C++, virtual functions are fundamental in supporting the capability to implement an object-
oriented design. They allow a call to a member function made on a pointer/reference to a base 
class, to result in a member function of the object s concrete class being called. In doing so, 
they are the language s fundamental mechanism of run time polymorphism  the function 
actually called depends on the type of the object pointed to, as determined at run time. 

Sometimes being able to select a function to call based on the run time type of one object is 
not enough. Sometimes there is a need to create the effect of a function being virtual with 
respect to two or more objects. Some languages (e.g. CLOS) have such a mechanism, and 
such functions are known as multi-methods. However C++ has no such feature, and where 
multi-methods are required in C++ the effect must be achieved using design and 
programming techniques. 

In this article I will first describe a problem I once faced, that motivated me to take an interest 
in these techniques. I will describe the solution I chose (which unfortunately was not a good 
one) and the alternatives I considered, examining the tradeoffs they offer. Then I will go on to 
look at the solution I would choose if I faced the problem now, and explain why I would 
prefer it. 

The Problem 
A few years ago I was involved in the development of a package for producing two-
dimensional technical drawings. The drawing program supported two basic shapes: straight 
lines, and semi-circular arcs, and it is easy to understand how the following hierarchy was 
fundamental to the design. 

 



It is obvious that these shapes would need an interface capable of supporting the operations 
the user is certain to expect, such as being able to move the shapes around and rotate them. 
However, because the program was for producing drawings of a technical nature  essentially 
2D CAD  an operation to calculate the intersection with another shape was also necessary. 
Unfortunately having available a shape abstraction is not good enough: the 
intersection() methods need to implement the intersection calculation formula, and 
implementing the formula requires the concrete type of both shapes. In passing, it was to my 
delight that I found Bjarne Stroustrup cites almost this very problem (in [D&E]) as an 
example of where multi-methods would be useful.  

The solution I came up with at the time was not very good and the irritating thing was that I 
knew I knew this 

 

I just didn t know what else to do. I could think of other approaches, but 
they all seemed worse than the one I used. For example, some sources (e.g. [More Effective 
C++]) use the brute force approach of down casting in conjunction with RTTI. In hindsight 
though, the RTTI approach offered a better set of tradeoffs. 

This problem has been in my mind (on and off) ever since, and years later, I have come up 
with what I think is a satisfactory approach. 

Two Alternative Solutions 
I considered two solutions at the time. One of them worked by finding out the run time types 
of the shapes using run time type information (RTTI); this could be described as a brute 
force approach. The alternative used an object-oriented approach, and I consider it to be a 
classic example of a solution being flawed while being unquestionably object-oriented. 

Solution 1: The RTTI Approach 
First consider what a fragment of the code to implement this approach would look like. Here, 
dynamic_cast is used to check for each possible type, and to provide the necessary 
downward conversion (or down cast). 

void intersection(const line& l, const shape& s, intersection_points& where) 
{ 
  if (const line* lp = 
    dynamic_cast<const line*>(&s)) 
  { 
    lines_intersection(l, *lp, where); 
  } 
  else if (const arc* ap = 
    dynamic_cast<const arc*>(&s)) 
  { 
    line_arc_intersection(l, *ap, where); 
  } 
  else 
    //.. 
}  

void intersection(const arc& a, const shape& s, intersection_points& where) 
{ /* .. */ } 

Now consider the consequences of adding a new specialisation of shape, e.g. an elliptical 
arc. This would mean two things: 

(1) Adding a new intersection() function overload. 

(2) Adding more code to the existing intersection functions. 

In passing, note there is a historical twist to my rejection of this solution: neither 
dynamic_cast, nor any other form of RTTI for that matter (remember I said it was a few 
years ago), were implemented in the compiler used on the 2D CAD project! Therefore, this 



approach would have required the manual implementation of some kind of an RTTI substitute 
(e.g. each class having an integer constant to identify it). 

Solution 2: A Flawed Object Oriented Approach 
This is the solution I implemented at the time. It employs an object-oriented mechanism of 
type recovery using virtual functions. The mechanism takes advantage of the fact that an 
object s concrete type is known within the member functions of the object s class. 

Let s look at a C++ fragment showing relevant parts of the shape hierarchy s class definitions: 
class shape 
{ 
public:  

  virtual ~shape();  

  virtual void intersection( 
      const shape& s, intersection_points& where) const = 0;   

  virtual void intersection( 
      const arc& s, intersection_points& where) const = 0;  

  virtual void intersection( 
      const line& s, intersection_points& where) const = 0; 
//... 
};  

class arc : public shape 
{ 
private: 
 virtual void intersection( 
      const shape& s, intersection_points& where) const;  

  virtual void intersection( 
      const arc& s, intersection_points& where) const;   

  virtual void intersection( 
      const line& s, intersection_points& where) const; 
// ... 
};  

class line : public shape 
{ 
private: 
 virtual void intersection( 
      const shape& s, intersection_points& where) const;  

  virtual void intersection( 
      const arc& s, intersection_points& where) const;   

  virtual void intersection( 
      const line& s, intersection_points& where) const; 
// ... 
}; 

The shape class provides the interface class heading up the hierarchy. Note that it has a 
virtual function overload taking shape as a parameter, as well as one for each of line and arc; 
if another type of shape (e.g. an elliptical arc) were ever to be added to the hierarchy, shape 
would need a further virtual function taking the new type as a parameter, and derived classes 
would need to implement it. Therefore, this design is awkward to extend because it would 
require changes to code in many of the files participating in the implementation of the shape 
hierarchy. 

The next code fragment shows what happens during an attempt to find the intersection (if 
any) of objects of type line and arc: 



shape* shape1 = new line(..);  

shape* shape2 = new arc(..);  

shape1->intersection(*shape2, where); // Calls line::intersection()  

void line::intersection( 
  const shape& s, intersection_points& where) const 
{ 
  s.intersection(*this, where); // Call is re-dispatched... 
}  

void arc::intersection( 
  const line& s,  intersection_points& where) const 
{ 
  line_arc_intersection( 
    s,       // ...and handled by the arc::intersection() 
    *this,   // overload that handles lines 
    where); 
} 

The first call is made on an object of concrete type line, so the first virtual function 
implementation entered is that of the overload line::intersection(const 
shape&, ..). Note: the type of the pointer returned by this is line* (rather than of 
type shape*). 

Next, a call s.intersection(*this, ..) is made, and results in a call to the 
intersection() overload taking a line as a parameter. Given that the pointer passed in 
(i.e. shape2) points to an object of concrete type arc, the result is a call to 
arc::intersection(const line&, ..). Now the concrete types of both objects is 
known. 

Sadly this solution is flawed because, in a nutshell, it renders derived classes intrusive not 
only on each other, but also on the base class. It must be remembered that calculating 
intersection points is only one aspect of shape functionality, yet providing it needs three 
virtual functions in the interface of each class in the hierarchy.Towards A Better 
Solution (?) 
In seeking a better solution, I m going to start by asserting that the flawed object oriented 
solution would actually have been quite reasonable but for one thing: classes are intrusive on 
each other. My point is that this intrusiveness would not be such a problem if it could be 
compartmentalised and therefore its impact limited. To this end I will recruit the help of the 
EXTENSION OBJECT design pattern (originally documented by Erich Gamma  see [PLoPD3] 
for the full write-up). What follows is only a brief and slightly C++ centric summary of the 
pattern, but the description (below) of how it is used to implement a better solution should 
complete the picture.   



Pattern Extension Object. 

Context, 
problem and 
forces 

Different clients will have different requirements of an object s 
interface. The precise interface that will be required by each client 
cannot always be anticipated at design time. Also, it is often 
unacceptable to trade provision for them against the interface bloat 
that would result. In C++ this problem can be addressed to some 
extent by an approach using freestanding functions. However this 
does not solve all the (potential) problems (for example, 
freestanding functions cannot be virtual). 

Solution Support the additional interfaces using separate objects and give 
the Subject an interface for returning Extension Objects. 

Configuration The extensions hierarchy is headed up by the extension 
interface, while the facilities the extension offers to clients are 
made available through the interface 
specific_extension.

 

The extension interface does not support the operations 
required by the client, because different extensions will offer 
different operations. Therefore client obtains access to 
extensions via get_extension(), to which it passes type, 
where type is simply some kind of indication of the extension type 
being requested.  

Consequences It can be seen that this pattern offers benefits in terms of flexible 
extensibility, but there are some drawbacks, for example: 

(1) Some of the behaviour of subject is moved out of it, so 
subject no longer expresses all the behaviour that clients can 
perceive it as having (whether this is a good or bad thing depends 
on the actual behaviour). 

(2) The client code will need to recover the 
specific_extension type. A typical method of doing so in 



C++ is by using dynamic_cast. Therefore, clients become 
more complex in the face of the machinery needed to use the 
extensions. This machinery can be encapsulated, but the issue still 
needs to be kept in mind.   

Solution Using Extension Objects 
The solution presented as a flawed object-oriented solution was in some ways an attractive 
one, exhibiting the benefits of object-oriented design, keeping code performing a function 
together and separate from code performing other functions. It was only flawed as a 
consequence of making classes within the shape hierarchy intrusive on each other, and the 
interface clutter caused (three virtual functions were needed in each class interface). 
Introducing EXTENSION OBJECT allows the same mechanisms to be deployed while keeping 
the intrusiveness and interface clutter out of the shape hierarchy. The design now looks like 
this. 

 

In this design, the following mappings from the Extension Object configuration (above) are 
used: 

 

shape s create() method takes over from subject s get_extension() 
method. This is because of a C++ object lifecycle issue that will soon become clear.  

 

shape_extension and shape_intersector assume the roles of extension and 
specific_extension, respectively. 

 

line_intersector and arc_intersector are the 
concrete_specific_entensions. 



As an aid to understanding these mappings, the names from the configuration are used as 
stereotypes in the above exposition in UML. 

Implementation 
The mechanics of recovering the types and working out the intersection points are the same as 
in the flawed solution  the only difference is that this time the participants are 
shape_intersector, arc_intersector, line_intersector and the additional 
shape_extension. 

The class definition contains very little. 
class shape_extension 
{ 
public: 
  virtual ~shape_extension();  

// ...  
}; 

It has a virtual destructor, but that needs no explanation. 
namespace intersections 
{ 
  class shape_intersector 
  { 
  public: 
    virtual ~shape_intersector();  

    virtual void intersection( 
      const shape_intersector& obj, intersection_points& where) 
    const = 0;  

    virtual void intersection( 
      const line_intersector& obj, intersection_points& where) 
    const = 0;  

    virtual void intersection( 
      const arc_intersector& obj, intersection_points& where) 
    const = 0;  

  // ...  
  };  

  boost::shared_ptr<shape_intersector> 
    down_cast(boost::shared_ptr<shape_extension> obj); 
} 

The shape_intersector class is the first one in the hierarchy to have an interface of any 
substance. It declares intersection() member function overloads in much the same way 
as shape did in the flawed object oriented solution  the difference here being that these 
overloads take line_intersector and arc_intersector parameters, in place of 
line and arc parameters respectively. 

Another declaration of interest is that of the down_cast() function: not a member of 
shape_intersector but provided within the intersections namespace. To 
understand its role, first we need to look at shape.  



class shape 
{ 
public:  

  virtual void move_x(coordinate_units x) = 0; 
  virtual void move_y(coordinate_units y) = 0; 
  virtual void rotate(radians rotation) = 0; 
// ...  

  virtual boost::shared_ptr<shape_extension> 
    create(const std::type_info& type) const = 0;  
}; 

The shape interface class provides (besides the functional interface supporting user 
operations) a virtual member factory function create() that returns a 
shape_extension instance. Here there is a deviation from the canonical EXTENSION 

OBJECT configuration, because concrete_subject (line or arc, omitted from the UML 
diagram) is designated as its owner, which is not quite the case here. The design in this 
example uses the C++ idiom of using a smart pointer to manage memory acquisition and 
release, to avoid running into problems with object lifetimes. 

Returning to down_cast(): in order to use the shape_intersector interface, the 
shared_ptr<shape_extension> instance returned from shape::create() must 
be converted to type shared_ptr<shape_intersector> (remember this was listed as 
a consequence of the EXTENSION OBJECT design pattern). A custom mechanism in the form of 
down_cast() is provided to achieve this, because unfortunately the use of a smart pointer 
cuts across the natural approach of using dynamic_cast. 

The definitions of classes line and arc are self-explanatory: they just provide 
implementations of shape s virtual member functions move_x(), move_y, rotate() 
etc. I m not going to list them here because I don t believe they will actually add anything to 
the illustration. Instead I m going to move on to intersection(), another freestanding 
function declared within the intersections namespace. 

namespace intersections 
{ 
  intersection_points intersection(const shape& s1, const shape& s2) // 1 
  { 
    intersection_points where;  

    boost::shared_ptr<shape_intersector> first = 
      down_cast(s1.create(typeid(shape_intersector)));  // 2 
   
    boost::shared_ptr<shape_intersector> second = 
      down_cast(s2.create(typeid(shape_intersector)));  // 3  

    first->intersection(*second, where); // 4  

    return where; 
  } 
} 

Before looking at intersection() s implementation, I feel it is worth digressing briefly 
to look at a trade-off that has been made. It was observed that as a consequence of the 
EXTENSION OBJECT design pattern, the machinery for obtaining extension 
(shape_extension) instances and down casting them to specific_extension 
(shape_intersector) adds complexity to clients. It was also observed that one way to 
address this complexity is to encapsulate it, and this is the approach taken here: i.e. it s all 
wrapped up in the intersection() function. This encapsulation introduces a tension with 
the design decision to create shape_extension instances on the heap (instead of the 
originating object owning them): there is no way to preserve these instances between calls to 



intersection(). Thus efficiency is traded for simplicity of usage (and tidiness of 
exposition in an article ). 

Getting back to intersection() s implementation... 

The function takes two shape instances (by reference so they exhibit run time polymorphism), 
s1 and s2, as its parameters (statement 1). Statements 2 and 3 create first and second, 
these being the shape_intersector instances, and here two things should be observed: 

 

The shape::create() function is called within the call to down_cast() so the 
instances, although present, never appear explicitly as type shape_extension. 

 

In the calls to shape::create(), the arguments are in both cases 
typeid(shape_intersector), i.e. not the typeid of the most derived classes. 
This is because the concrete classes line and arc know they must create 
line_intersector and arc_intersector respectively  they only need to be 
told they are creating extensions to a type shape_intersector, as opposed to 
any other type of extension. 

Statement 4 is where the intersections (if any) are calculated. The rest of how this works is 
very similar to the way in which the flawed object-oriented solution worked. 

shape* shape1 = new line(); 
shape* shape2 = new arc(); 

And their intersections calculated

 

intersection_points where = intersection(*shape1, *shape2); 

The workings of the intersection() function were explained above, so we now need to 
look at how line_intersector::intersection() and 
arc_intersector::intersection() work. When intersection() is called 
with shape1 and shape2 as arguments, statement 4 in its implementation results in a call 
to the line_intersector::intersection() overload taking a 
shape_intersector parameter. 

void line_intersector::intersection( 
  const shape_intersector& s, intersection_points& where) const 
{ 
  s.intersection(*this, where); // Call is re-dispatched... 
} 

Remember shape2 has concrete type arc, so re-dispatching the call results in a call to 
arc_intersector::intersection()  specifically, the overload that takes a 
line_intersector as a parameter. 

void arc_intersector::intersection( 
  const line_intersector& s, intersection_points& where) const 
{ 
  line_arc_intersection( 
    s, 
    *this, 
    where); 
} 

That s it. At this point the concrete types of both shape_intersectors are known, and 
the calculation (details of which we are not concerned with here) can be performed. 

Phew! 

Tradeoffs  In Favour 
Intersection logic is non-intrusive with respect to the shape hierarchy. In the case of the 
flawed object oriented solution, the problem was that derived classes were intrusive on the 



base class, and on each other. In the case of the solution that uses Extension Objects, classes 
derived from shape_intersector are also intrusive on each other, but there is a very 
important difference: there is no intrusiveness on the shape hierarchy. For example: if 
another shape is added, only the classes in the multi-methods hierarchy are affected. 

Note that, in the case of the example of adding another type of shape (an elliptical arc for 
example), the bodies of existing shape_intersector member functions will not need their 
implementations changing. This is a consequence of virtual functions being used to automate 
the control flow by placing it in the hands of the C++ language. By contrast, in the case of the 
RTTI solution, the control flow is implemented directly in the code, and as a consequence 
adding the code for a new type of shape means modifying existing code. In the former case, 
the absence of a need to change existing code means that the chance of introducing an error 
into it is reduced. 

Tradeoffs  Against 
The shape and shape_intersector hierarchies have parallel corresponding classes. 
Working with and maintaining such parallel hierarchies always creates a balancing act of 
design. 

The most obvious burden is the extra types that now inhabit the design, and these must be 
managed  not just in physical terms but also in addressing the communication issues that 
arise (more documentation will be needed). 

More subtle is the lack of any direct mention of intersections in the shape interface, and in 
the interfaces of classes derived from it. Here, a consequence associated with applying the 
EXTENSION OBJECT design pattern haunts the design. 

In Conclusion 
Using the object-oriented paradigm does not automatically make a design superior. In the past 
object orientation has been adopted in the hope that it would be the silver bullet that would 
solve all software development problems. Of course, history now records that nothing was 
further from the truth. There were many factors involved, one being the lack of understanding 
of object orientation itself. Another critical factor however, was the assumption that being 
object oriented automatically made a design a good one. The flawed object oriented solution 
presented earlier is an excellent counter example.  

An important lesson is that even good OOD has its costs. It comes back to the fact that when 
solving problems with any level of complexity, there is no such thing as a solution per-se 

 

there are options and tradeoffs. 

Finally, the BSI C++ panel are currently discussing a proposal by Julian Smith to add multi-
methods to the language  therefore this feature may or may not be present in the language 
when the next edition of the standard appears. Full details of the proposal can be found at 
Julian s web site (see [Multi-Methods Proposal]). 
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